On a nonlinear wave equation with a nonlocal boundary condition

Consider the initial-boundary value problem for the nonlinear wave equation utt − µ(t)uxx + K|u| p−2u + λ|ut| q−2ut = F(x, t), 0 < x < 1, 0 < t < T, µ(t)ux(0, t) = K0u(0, t) + Rt 0 k (t − s) u (0, s) ds + g(t), −µ(t)ux(1, t) = K1u(1, t) + λ1|ut(1, t)| α−2ut(1, t), u(x, 0) = ue0(x), ut(x,...

Mô tả chi tiết

Lưu vào:
Hiển thị chi tiết
Tác giả chính: Le Thi Phuong Ngoc
Đồng tác giả: Tran Minh Thuyet
Định dạng: Journal Article
Ngôn ngữ:English
Thông tin xuất bản: Spinger 2017
Chủ đề:
Truy cập trực tuyến:http://journals.math.ac.vn/acta/images/stories/pdf1/Vol_36_No_2/Bai15_Ngoc_Thuyet_Son_Long_2010_63.pdf
http://digital.lib.ueh.edu.vn/handle/UEH/56261
Từ khóa: Thêm từ khóa bạn đọc
Không có từ khóa, Hãy là người đầu tiên gắn từ khóa cho biểu ghi này!
id oai:localhost:UEH-56261
record_format dspace
spelling oai:localhost:UEH-562612020-01-06T03:26:34Z On a nonlinear wave equation with a nonlocal boundary condition Le Thi Phuong Ngoc Tran Minh Thuyet Pham Thanh Son Nguyen Thanh Long Galerkin method A priori estimates Asymptotic expansion of the solution up to order N Consider the initial-boundary value problem for the nonlinear wave equation utt − µ(t)uxx + K|u| p−2u + λ|ut| q−2ut = F(x, t), 0 < x < 1, 0 < t < T, µ(t)ux(0, t) = K0u(0, t) + Rt 0 k (t − s) u (0, s) ds + g(t), −µ(t)ux(1, t) = K1u(1, t) + λ1|ut(1, t)| α−2ut(1, t), u(x, 0) = ue0(x), ut(x, 0) = ue1(x), where p, q, α ≥ 2; K0, K1, K ≥ 0; λ, λ1 > 0 are given constants and µ, F, g, k, ue0, ue1, are given functions. First, the existence and uniqueness of a weak solution are proved by using the Galerkin method. Next, with α = 2, we obtain an asymptotic expansion of the solution up to order N in two small parameters λ, λ1 with error p λ2 + λ 2 1 N+ 1 2 . 2017-11-03T10:13:47Z 2017-11-03T10:13:47Z 2011 Journal Article 0251-4184 (Print), 2315-4144 (Online) http://journals.math.ac.vn/acta/images/stories/pdf1/Vol_36_No_2/Bai15_Ngoc_Thuyet_Son_Long_2010_63.pdf http://digital.lib.ueh.edu.vn/handle/UEH/56261 en ACTA Mathematica Vietnamica Vol. 36, No.2 none Portable Document Format (PDF) 345 374 Spinger
institution Đại học Kinh tế Thành phố Hồ Chí Minh
collection DSpaceUEH
language English
topic Galerkin method
A priori estimates
Asymptotic expansion of the solution up to order N
spellingShingle Galerkin method
A priori estimates
Asymptotic expansion of the solution up to order N
Le Thi Phuong Ngoc
On a nonlinear wave equation with a nonlocal boundary condition
description Consider the initial-boundary value problem for the nonlinear wave equation utt − µ(t)uxx + K|u| p−2u + λ|ut| q−2ut = F(x, t), 0 < x < 1, 0 < t < T, µ(t)ux(0, t) = K0u(0, t) + Rt 0 k (t − s) u (0, s) ds + g(t), −µ(t)ux(1, t) = K1u(1, t) + λ1|ut(1, t)| α−2ut(1, t), u(x, 0) = ue0(x), ut(x, 0) = ue1(x), where p, q, α ≥ 2; K0, K1, K ≥ 0; λ, λ1 > 0 are given constants and µ, F, g, k, ue0, ue1, are given functions. First, the existence and uniqueness of a weak solution are proved by using the Galerkin method. Next, with α = 2, we obtain an asymptotic expansion of the solution up to order N in two small parameters λ, λ1 with error p λ2 + λ 2 1 N+ 1 2 .
author2 Tran Minh Thuyet
author_facet Tran Minh Thuyet
Le Thi Phuong Ngoc
format Journal Article
author Le Thi Phuong Ngoc
author_sort Le Thi Phuong Ngoc
title On a nonlinear wave equation with a nonlocal boundary condition
title_short On a nonlinear wave equation with a nonlocal boundary condition
title_full On a nonlinear wave equation with a nonlocal boundary condition
title_fullStr On a nonlinear wave equation with a nonlocal boundary condition
title_full_unstemmed On a nonlinear wave equation with a nonlocal boundary condition
title_sort on a nonlinear wave equation with a nonlocal boundary condition
publisher Spinger
publishDate 2017
url http://journals.math.ac.vn/acta/images/stories/pdf1/Vol_36_No_2/Bai15_Ngoc_Thuyet_Son_Long_2010_63.pdf
http://digital.lib.ueh.edu.vn/handle/UEH/56261
work_keys_str_mv AT lethiphuongngoc onanonlinearwaveequationwithanonlocalboundarycondition
_version_ 1810055152708616192