Deep Kalman FilterSimultaneous Multi-Sensor Integration and Modelling

In this paper, we developed deep Kalman filter to model and remove IMU errors and, consequently, improve the accuracy of IMU positioning. To achieve this, we added a modelling step to the prediction and update steps of the Kalman filter, so that the IMU error model is learned during integration. The...

Mô tả chi tiết

Lưu vào:
Hiển thị chi tiết
Tác giả chính: Hosseinyalamdary S.
Định dạng: BB
Ngôn ngữ:eng
Thông tin xuất bản: null 2020
Chủ đề:
Truy cập trực tuyến:http://tailieuso.tlu.edu.vn/handle/DHTL/8487
Từ khóa: Thêm từ khóa bạn đọc
Không có từ khóa, Hãy là người đầu tiên gắn từ khóa cho biểu ghi này!
id oai:localhost:DHTL-8487
record_format dspace
spelling oai:localhost:DHTL-84872020-05-20T08:23:52Z Deep Kalman FilterSimultaneous Multi-Sensor Integration and Modelling Hosseinyalamdary S. Deep Kalman filter Simultaneous Sensor Integration and Modelling Recurrent neural network Global Navigation Satellite System Long-Short Term Memory Deep learning In this paper, we developed deep Kalman filter to model and remove IMU errors and, consequently, improve the accuracy of IMU positioning. To achieve this, we added a modelling step to the prediction and update steps of the Kalman filter, so that the IMU error model is learned during integration. The results showed our deep Kalman filter outperformed the conventional Kalman filter and reached a higher level of accuracy. https://www.mdpi.com/1424-8220/18/5/1316/htm 2020-05-11T08:54:45Z 2020-05-11T08:54:45Z 2018. 30605s BB Sensors Vol 18, Issue 5, 15 p. 1424-8220 00024827 http://tailieuso.tlu.edu.vn/handle/DHTL/8487 eng null
institution Trường Đại học Thủy Lợi
collection DSpace
language eng
topic Deep Kalman filter
Simultaneous Sensor Integration and Modelling
Recurrent neural network
Global Navigation Satellite System
Long-Short Term Memory
Deep learning
spellingShingle Deep Kalman filter
Simultaneous Sensor Integration and Modelling
Recurrent neural network
Global Navigation Satellite System
Long-Short Term Memory
Deep learning
Hosseinyalamdary S.
Deep Kalman FilterSimultaneous Multi-Sensor Integration and Modelling
description In this paper, we developed deep Kalman filter to model and remove IMU errors and, consequently, improve the accuracy of IMU positioning. To achieve this, we added a modelling step to the prediction and update steps of the Kalman filter, so that the IMU error model is learned during integration. The results showed our deep Kalman filter outperformed the conventional Kalman filter and reached a higher level of accuracy.
format BB
author Hosseinyalamdary S.
author_facet Hosseinyalamdary S.
author_sort Hosseinyalamdary S.
title Deep Kalman FilterSimultaneous Multi-Sensor Integration and Modelling
title_short Deep Kalman FilterSimultaneous Multi-Sensor Integration and Modelling
title_full Deep Kalman FilterSimultaneous Multi-Sensor Integration and Modelling
title_fullStr Deep Kalman FilterSimultaneous Multi-Sensor Integration and Modelling
title_full_unstemmed Deep Kalman FilterSimultaneous Multi-Sensor Integration and Modelling
title_sort deep kalman filtersimultaneous multi-sensor integration and modelling
publisher null
publishDate 2020
url http://tailieuso.tlu.edu.vn/handle/DHTL/8487
work_keys_str_mv AT hosseinyalamdarys deepkalmanfiltersimultaneousmultisensorintegrationandmodelling
_version_ 1787740508240478208