Formulation and characterization of hydroxyethyl cellulose-based gel containing metronidazole-loaded solid lipid nanoparticles for buccal mucosal drug delivery
Local delivery of drug is a promising strategy to manage periodontitis characterized by chronic inflammation of the soft tissue surrounding the teeth. An optimized system should prolong the drug retention time and exhibit controlled drug permeation through the buccal mucosal layer. This study was ai...
Lưu vào:
Tác giả chính: | , , |
---|---|
Định dạng: | Bài trích |
Ngôn ngữ: | English |
Thông tin xuất bản: |
Elsevier
2022
|
Chủ đề: | |
Truy cập trực tuyến: | https://www.sciencedirect.com/science/article/abs/pii/S0141813021025678?via%3Dihub https://dlib.phenikaa-uni.edu.vn/handle/PNK/5876 https://doi.org/10.1016/j.ijbiomac.2021.11.161 |
Từ khóa: |
Thêm từ khóa bạn đọc
Không có từ khóa, Hãy là người đầu tiên gắn từ khóa cho biểu ghi này!
|
id |
oai:localhost:PNK-5876 |
---|---|
record_format |
dspace |
spelling |
oai:localhost:PNK-58762022-08-17T05:54:54Z Formulation and characterization of hydroxyethyl cellulose-based gel containing metronidazole-loaded solid lipid nanoparticles for buccal mucosal drug delivery Hoang, Nhan Hoa Hoang Hao, Le Thien Giap, Le Hydroxyethyl cellulose Solid lipid nanoparticle Local delivery of drug is a promising strategy to manage periodontitis characterized by chronic inflammation of the soft tissue surrounding the teeth. An optimized system should prolong the drug retention time and exhibit controlled drug permeation through the buccal mucosal layer. This study was aimed to develop hydroxyethyl cellulose (HEC)-based gel containing metronidazole (MTZ) loaded in solid lipid nanoparticles (SLNs), and to enhance the antimicrobial activity of MTZ. SLNs were prepared using a combination method of solvent evaporation and hot homogenization. The results showed that the fabricated SLNs, comprising of Precirol (2.93%, w/v), Tween 80 (1.8%, w/v), and the drug:lipid ratio of 19.3% (w/w), were approximately 200 nm in size, with a narrow distribution. The HEC (3%, w/w)-based gel formed a smooth, homogeneous structure and had preferable mechanical and rheological properties. Moreover, the MTZ-loaded SLNs-based HEC gel (equivalent to 1% of MTZ, w/w) exhibited a sustained in vitro drug release pattern, optimal ex vivo permeability, and enhanced in vitro antimicrobial activity after 24 h of treatment. These findings indicate the potential of the MTZ-loaded SLNs-based HEC formulation for local drug delivery at the buccal mucosa in managing periodontal disease. 2022-07-13T01:59:47Z 2022-07-13T01:59:47Z 2022 Bài trích https://www.sciencedirect.com/science/article/abs/pii/S0141813021025678?via%3Dihub https://dlib.phenikaa-uni.edu.vn/handle/PNK/5876 https://doi.org/10.1016/j.ijbiomac.2021.11.161 en Elsevier |
institution |
Trường Đại học Phenikaa |
collection |
DSpace |
language |
English |
topic |
Hydroxyethyl cellulose Solid lipid nanoparticle |
spellingShingle |
Hydroxyethyl cellulose Solid lipid nanoparticle Hoang, Nhan Hoa Hoang Hao, Le Thien Giap, Le Formulation and characterization of hydroxyethyl cellulose-based gel containing metronidazole-loaded solid lipid nanoparticles for buccal mucosal drug delivery |
description |
Local delivery of drug is a promising strategy to manage periodontitis characterized by chronic inflammation of the soft tissue surrounding the teeth. An optimized system should prolong the drug retention time and exhibit controlled drug permeation through the buccal mucosal layer. This study was aimed to develop hydroxyethyl cellulose (HEC)-based gel containing metronidazole (MTZ) loaded in solid lipid nanoparticles (SLNs), and to enhance the antimicrobial activity of MTZ. SLNs were prepared using a combination method of solvent evaporation and hot homogenization. The results showed that the fabricated SLNs, comprising of Precirol (2.93%, w/v), Tween 80 (1.8%, w/v), and the drug:lipid ratio of 19.3% (w/w), were approximately 200 nm in size, with a narrow distribution. The HEC (3%, w/w)-based gel formed a smooth, homogeneous structure and had preferable mechanical and rheological properties. Moreover, the MTZ-loaded SLNs-based HEC gel (equivalent to 1% of MTZ, w/w) exhibited a sustained in vitro drug release pattern, optimal ex vivo permeability, and enhanced in vitro antimicrobial activity after 24 h of treatment. These findings indicate the potential of the MTZ-loaded SLNs-based HEC formulation for local drug delivery at the buccal mucosa in managing periodontal disease. |
format |
Bài trích |
author |
Hoang, Nhan Hoa Hoang Hao, Le Thien Giap, Le |
author_facet |
Hoang, Nhan Hoa Hoang Hao, Le Thien Giap, Le |
author_sort |
Hoang, Nhan Hoa |
title |
Formulation and characterization of hydroxyethyl cellulose-based gel containing metronidazole-loaded solid lipid nanoparticles for buccal mucosal drug delivery |
title_short |
Formulation and characterization of hydroxyethyl cellulose-based gel containing metronidazole-loaded solid lipid nanoparticles for buccal mucosal drug delivery |
title_full |
Formulation and characterization of hydroxyethyl cellulose-based gel containing metronidazole-loaded solid lipid nanoparticles for buccal mucosal drug delivery |
title_fullStr |
Formulation and characterization of hydroxyethyl cellulose-based gel containing metronidazole-loaded solid lipid nanoparticles for buccal mucosal drug delivery |
title_full_unstemmed |
Formulation and characterization of hydroxyethyl cellulose-based gel containing metronidazole-loaded solid lipid nanoparticles for buccal mucosal drug delivery |
title_sort |
formulation and characterization of hydroxyethyl cellulose-based gel containing metronidazole-loaded solid lipid nanoparticles for buccal mucosal drug delivery |
publisher |
Elsevier |
publishDate |
2022 |
url |
https://www.sciencedirect.com/science/article/abs/pii/S0141813021025678?via%3Dihub https://dlib.phenikaa-uni.edu.vn/handle/PNK/5876 https://doi.org/10.1016/j.ijbiomac.2021.11.161 |
work_keys_str_mv |
AT hoangnhanhoa formulationandcharacterizationofhydroxyethylcellulosebasedgelcontainingmetronidazoleloadedsolidlipidnanoparticlesforbuccalmucosaldrugdelivery AT hoanghaole formulationandcharacterizationofhydroxyethylcellulosebasedgelcontainingmetronidazoleloadedsolidlipidnanoparticlesforbuccalmucosaldrugdelivery AT thiengiaple formulationandcharacterizationofhydroxyethylcellulosebasedgelcontainingmetronidazoleloadedsolidlipidnanoparticlesforbuccalmucosaldrugdelivery |
_version_ |
1787741091965960192 |