Adaptive Energy Management in Microgrid Based on New Training Strategy for ANFIS
Managing procedure for charging and discharging battery system plays an essential contributor in improving the performance of energy storage system for example increment of utilizing batteries. This paper aims to develop a new hybrid genetic algorithm-based proportional integral (GA-based PI) contro...
Lưu vào:
Tác giả chính: | , , , |
---|---|
Định dạng: | Bài trích |
Ngôn ngữ: | English |
Thông tin xuất bản: |
Springer
2022
|
Chủ đề: | |
Truy cập trực tuyến: | https://link.springer.com/chapter/10.1007/978-3-030-92574-1_15 https://dlib.phenikaa-uni.edu.vn/handle/PNK/5753 https://doi.org/10.1007/978-3-030-92574-1_15 |
Từ khóa: |
Thêm từ khóa bạn đọc
Không có từ khóa, Hãy là người đầu tiên gắn từ khóa cho biểu ghi này!
|
Tóm tắt: | Managing procedure for charging and discharging battery system plays an essential contributor in improving the performance of energy storage system for example increment of utilizing batteries. This paper aims to develop a new hybrid genetic algorithm-based proportional integral (GA-based PI) controller with an adaptive neuro-fuzzy inference system (ANFIS) for the charging balance of batteries. The dataset is generated by using the GA-based PI controller, then a training strategy is introduced for the ANFIS controller. The proposed approach is evaluated by the GA-based PI controller and the PI controller based on Ziegler Nichols method |
---|